

Conference: Congreso Interdisciplinario de Energías Renovables -Mantenimiento Industrial - Mecatrónica e Informática **Booklets**

RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - E-Revistas - Google Scholar DOI - REBID - Mendeley - DIALNET - ROAD - ORCID

Title: Implementación de un deshidratador solar para la eficiente producción de chile

Author: Ramiro Reséndiz-Badillo

Editorial label ECORFAN: 607-8324 **BCIERMIMI Control Number:** 2016-01 BCIERMIMI Classification (2016): 191016-0101

Pages: 34 Mail:

RNA: 03-2010-032610115700-14

ECORFAN-México, S.C.

244 – 2 Itzopan Street La Florida, Ecatepec Municipality

Mexico State, 55120 Zipcode Phone: +52 | 55 6|59 2296

Skype: ecorfan-mexico.s.c. E-mail: contacto@ecorfan.org

Facebook: ECORFAN-México S. C. Twitter: @EcorfanC www.ecorfan.org

Holdings Bolivia

Paraguay

Spain

France Ecuador

Cuba

the Congo Dominica Haití

Nicaragua

Czech

Republic

Energías Renovables

Colegio de Ingenieros en Energias Renovables

OBJETIVO GENERAL

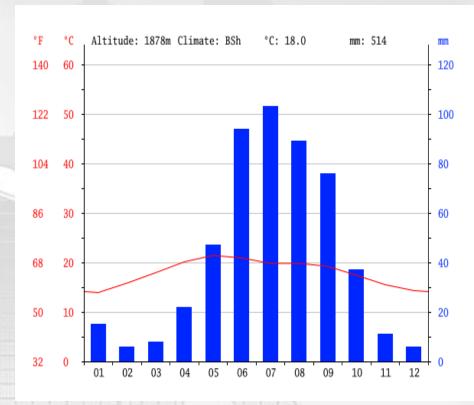
Desarrollar un sistema de secado y deshidratado eficiente para variedades de legumbres, hortalizas, frutas etc. (en este caso, chiles), para aumentar la producción hasta de un 50% en la comunidad de "La Fuente" en el municipio de Tequisquiapan, estado de Querétaro.

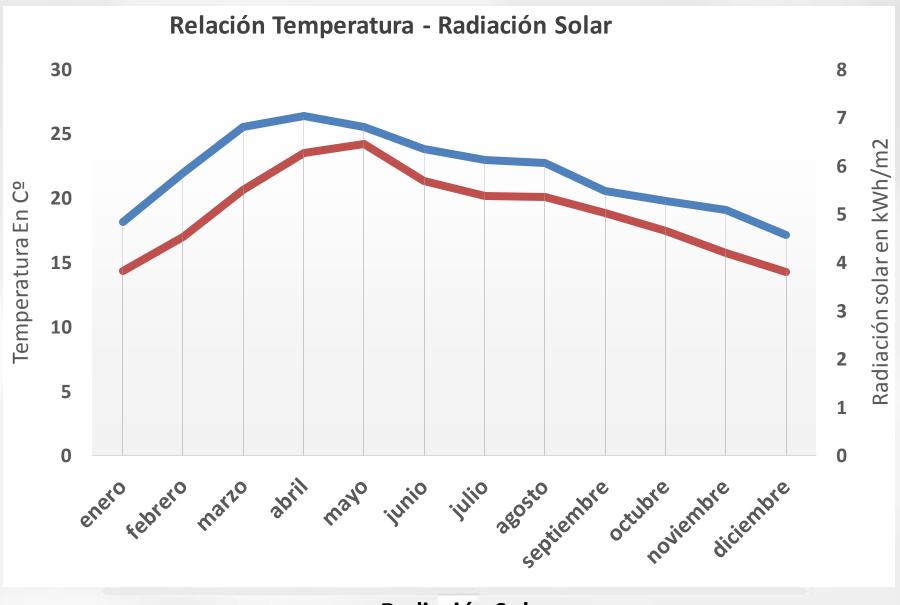
OBJETIVOS ESPECÍFICOS

Mitigar en porcentajes altos el uso de combustibles que contaminen el medio ambiente.

Recuperar el mercado del deshidratado y secado del chile, en la comunidad "La Fuente".

Facilitar el trabajo en las labores del campo.


Integrar el uso de energías de usos renovables.



La localidad "La Fuente" en el Municipio de Tequisquiapan (en el Estado de Querétaro); sus coordenadas son; <u>20º 32' 51.98" N y -100º 02'.01" O</u>, cuenta con un clima benigno para el cultivo de plantas, especialmente en la variedad de chiles.

"La Fuente" es la comunidad por tradición de la producción de chiles a nivel estatal.

Análisis de precipitación

Temperatura

Radiación Solar

NASA Surface meteorology and Solar Energy: <u>RETScreen</u> Data

Deshidratador de alimentos con colectores solares planos y aceite de coco, como fluido de trabajo.

Institución y/o lugar de desarrollo

Instituto Tecnológico De Acapulco Departamento De Metalmecánica Laboratorio De Ingeniería Electromecánica.

Protege al producto agrícola de la contaminación y es factible de ser aplicada en las zonas rurales.

Nombre del proyecto

Diseño y construcción de un secador solar para frutas.

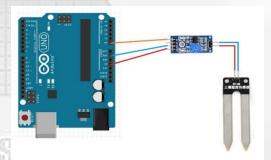
Institución y/o lugar de desarrollo

Facultad De Proyectos De La UNAM.



Nombre del proyecto

Control De Temperatura Y Humedad Relativa Para Un Deshidratador Solar De Frutas.



Universidad Tecnológica De Zacatecas Facultad De Tecnologías Escuela De Tecnología Mecánica.

Porcentaje de producción de chile en 2010

Querétaro es el 8º lugar de producción de chile.

Sea ha reflejado un porcentaje de perdidas en respecto a otros estados.

Chihuahua	19,123	Guanajuato	490	Quintana Roo	60	Yucatán	25
Zacatecas	14,251	Aguascalientes	405	Campeche	54	Sinaloa	7
San Luis Potosí	3,531	Coahuila	230	Nayarit	53	Colima	4
Jalisco	1,781	Hidalgo	204	Sonora	50	Nuevo León	4
Durango	1,769	Veracruz	178	Estado de México	46	Tlaxcala	3
Michoacán	1,031	Puebla	122	Morelos	28	Distrito Federal	3
Tamaulipas	633	Baja California	107	Oaxaca	28		
Querétaro	504	Baja California Sur	96	Guerrero	25	TOTAL	44,485

Producción en millones de pesos en 2010

Condiciones mas higiénicas

Agilizar el proceso de secado

Aumentar el mercado

Nuevas tecnologías

Análisis de producción

Primavera- verano 2010	Superficie cosechada (Ha)	Producción (ton)	Municipio líder	Avance sept 2011	Producción Promedio 2005-2010	Produccióm Máxima 2005-2010	Producción Mínima 2005-2010
Maíz forrajero	11,659	735,354	El marqués	557,351	505,924	735,354	133,055
Maíz grano	103,736	281,015	San juan del río		261,420	374,945	188,141
Sorgo grano	5,242	42,521	Pedro escobedo		49,452	63,970	32,641
Avena forrajera	2,212	27,883	Amealco		28,184	36,060	19,949
Tomate rojo (jitomate)	212	15,162	Pedro escobedo	5,250	12,650	20,037	2,565
Chile verde	1,171	14,994	San juan del río	6,859	8,991	14,994	6,237
GOLG	gio de	Ingenie	ros en l	inergia:	skeno	Valles	

PROYECTO NUEVOS TALENTOS 2016

UNIVERSIDAD TECNOLOGICA DE SAN JUAN DEL RIO

Identificación del problema

Pasos del método ingenieril

7

Implementación del diseño

Preparación de reportes, planos

especificaciones

Recolección de la información necesaria

Pasar de la idea principal al diseño preliminar

Búsqueda de soluciones creativas

		Actividad y/o		Mo	ayo			Juni	o			Julio	,			,	Agos	to		Sej	otien	nbre		O	ctub	ore
	Nº	pasos a seguir	8 14	15 21	22 28		8 14	15 21	22 28	28 30	8 14	15 21	22 28	28 31	1 7	8 14	15 21		28 30	8 14	15 21		28 30	1 7	8 14	15 21
	1	Identificación del problema																								
	2	Entrevistas																								
	3	Estudio de factibilidad																								
Fase de inicio	4	Recolección de la información necesaria																								
inicio	5	Preparación de reportes, planos y especificaciones																								
	6	Investigación teórica																								
	7	Búsqueda de soluciones creativas																								
	8	Centrar ideas																								
	9	Diseño en CAD																								

		Actividad y/o		М	iyo				Junio	,				Julio	,			,	Agos	to			Septiembre				Octubre		re
	Nō	pasos a	8	15	22	28	1	8	15	22	28	1	8	15	22	28	1	8	15	22	28	1	8	15	22	28	1	8	15
		seguir	14	21	28	30	7	14	21	28	30	7	14	21	28	31	7	14	21	28	30	7	14	21	28	30	7	14	21
Fase	10	Cotizaciones																											
de	11	Compra de materiales																											
desarrollo	12	Evaluación y selección de la solución																											
	13	Construcción de prototipo																											
	14	Primeras pruebas y análisis																											
	15	Preparación de reportes, planos y especificaciones																											
Fase de	16	Formulación de documentación																											
Cierre	17	Últimas pruebas																											
	18	implementación																											

Cantidad	Material	Descripción	Precio unitario	Precio total
1	Módulo Arduino Mega 2560	Tarjeta de control para automatización	\$480.00	\$480.00
9 tramos	Solera de aluminio	Utilizado para el soporte del deshidratador	\$200.00	\$1800.00
12 metro	Policarbonato	Utilizado para el colector solar	\$250.00	\$3000.00
6	Charolas de aluminio	Charolas de aluminio, higiénicas para colocar los chiles	\$150.00	\$900.00

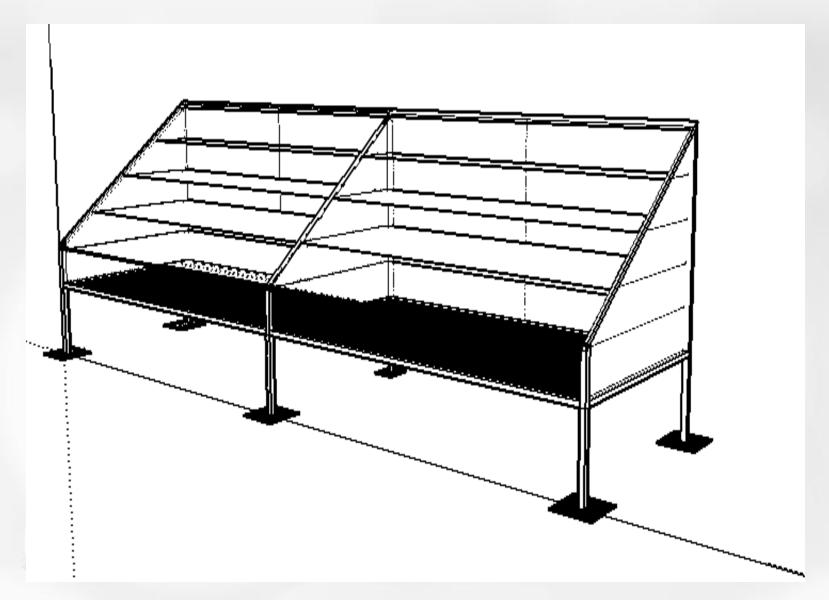
Cantidad	Material	Descripción	Precio unitario	Precio total
1	Sensor De Temperatura Y Humedad Dht11	Temperatura y humedad de bajo costo y rápida respuesta de medición, cuenta con un microcontrolador de 8 bits integrado para asegurar su fiabilidad a lo largo del tiempo, puede medir la humedad desde 20 % a 95 % y temperatura de 0° a 50°.	\$ 80.00	\$ 80.00
1	Lamina de acero	Para cubrir de la parte inferior del deshidratador.	\$650.00	\$650.00
2	Bisagra bidimensional	Elemento soporte para puerta del área de secado.	\$80.00	\$80.00
3	Pinturas en aerosol color negro mate	Para pintar el colector y algunas partes del deshidratador.	\$70.00	\$210.00

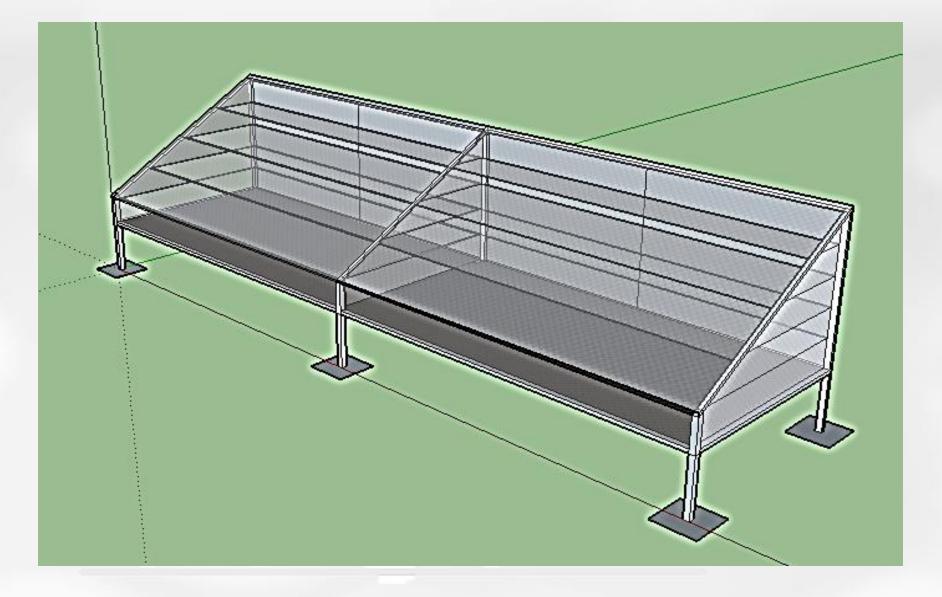
Cantidad	Material	Descripción	Precio unitario	Precio total
Una caja	Tornillos con tuerca	Medida de tornillos, de ½ pulgada	\$55.00	\$55.00
1 hoja	De triplay de Madera		\$280.00	\$280.00
2	Push botón		\$80.00	\$160.00
1	Display LCD 16x2		\$78.00	\$78.00
1	Tabla fenólica 20x20		\$75.00	\$75.00

TOTAL

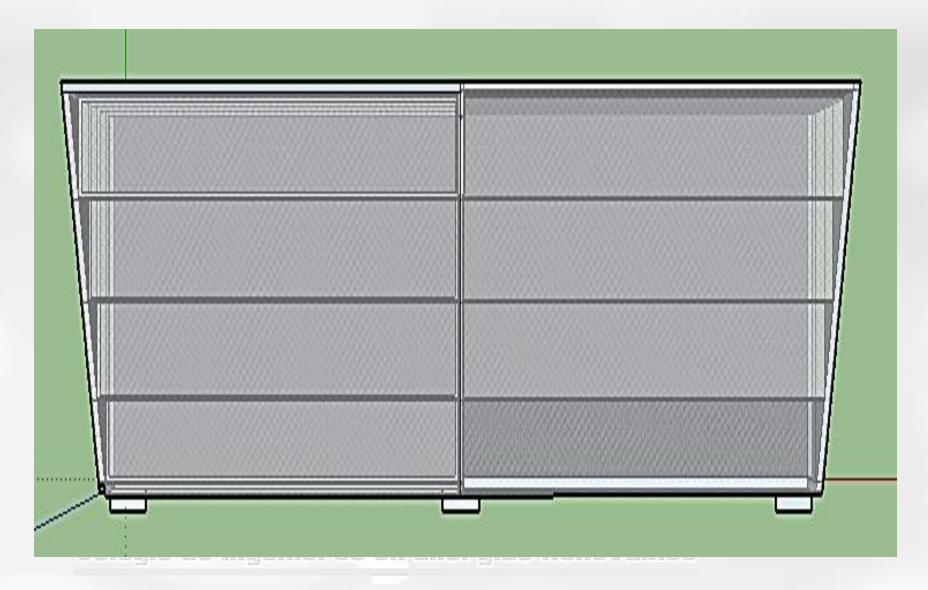
\$ 8098,99 00/100 MXN +

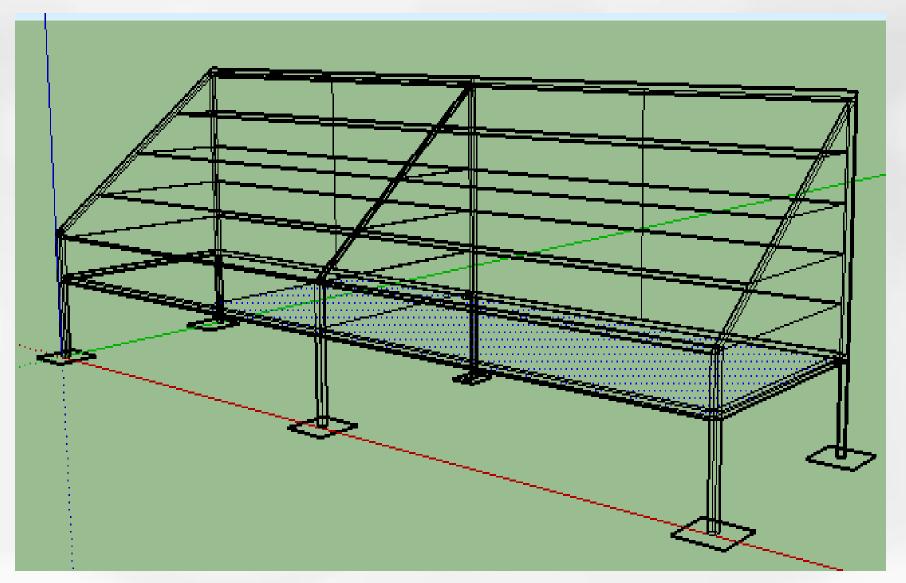
I.V.A

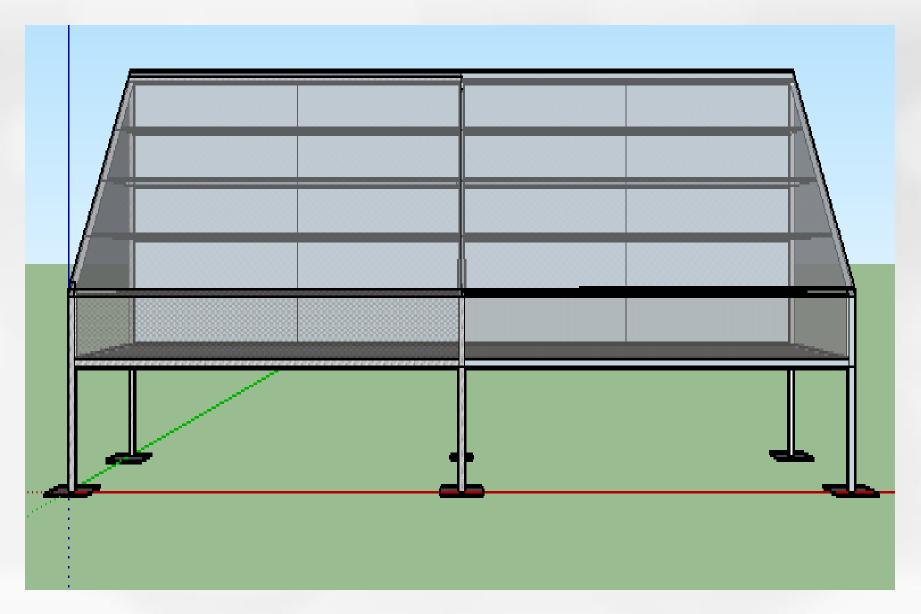

Ocho mil noventa y ocho punto noventa y nueve pesos 00/100 MXN

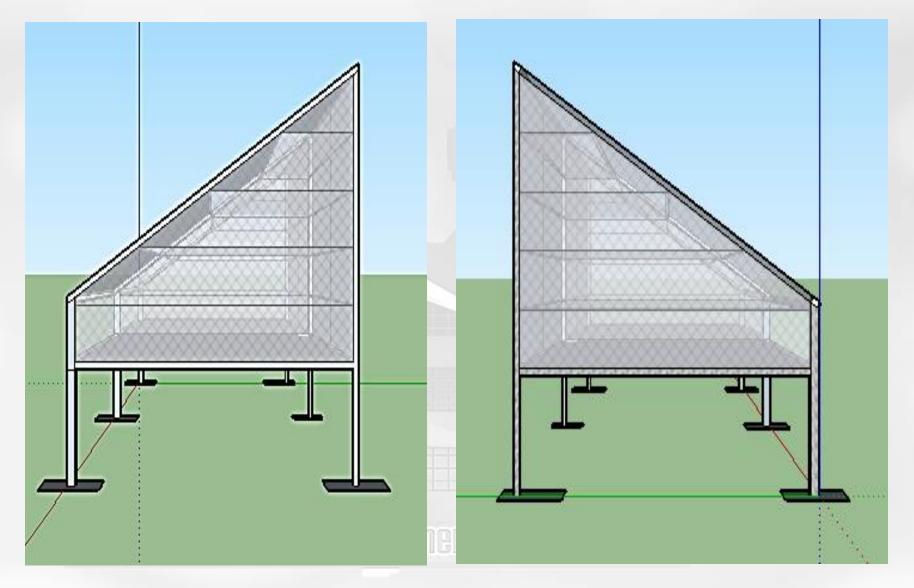

Etapas	Acciones y/o actividades	25%	50%	75%	100%
Identificación del problema	 ✓ Estudio de mercado previo. ✓ Encuestas. ✓ Uso de herramientas estadísticas. ✓ Entrevistas. ✓ Recurso literario. 				
Recolección de la información necesaria	 ✓ Marco teórico. ✓ Metodologías de la investigación. ✓ Formulación de objetivos, metas y alcances. ✓ Diagrama de Pareto. ✓ Diagrama de Ishikawa. ✓ Técnicas de investigación. 				

Etapas	Acciones y/o actividades	25%	50%	75%	100%
Pasar de la idea principal al diseño preliminar	 ✓ Cronograma de actividades. ✓ Estado del arte. ✓ Diseño asistido por computadora (uso del software AutoCAD) 				
Evaluación y selección de la solución	 ✓ Desarrollo del Programa Arduino. ✓ Diseño del circuito de control. ✓ Implemento de Sensores de magnitudes climáticas y metrológicas. 				

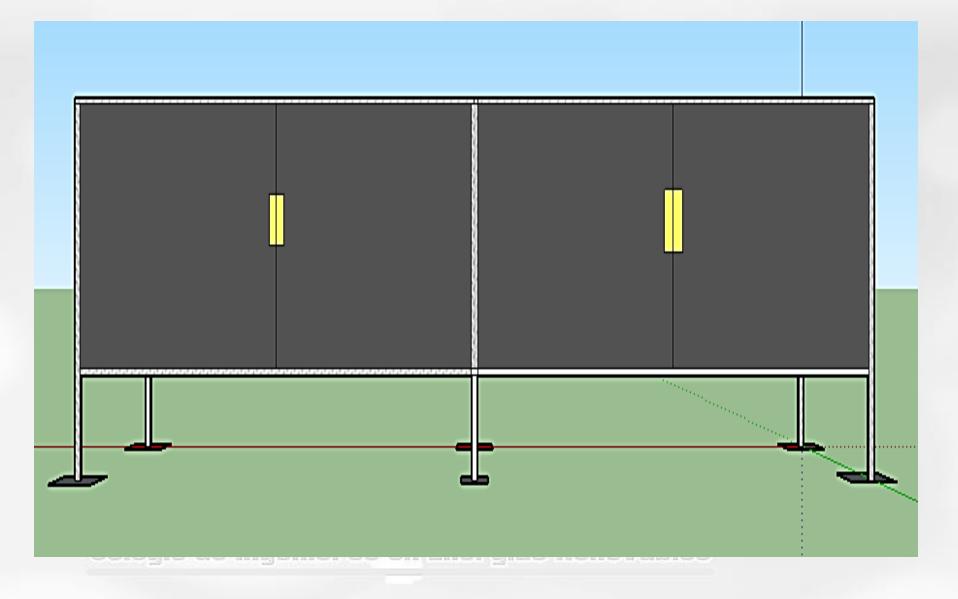

Etapas	Acciones y/o actividades	25%	50%	75%	100%
Preparación de reportes, planos y especificaciones	 ✓ Armado del deshidratador ✓ Pruebas y análisis ✓ Documentación final. 		Ö		
Implementación del diseño	 ✓ Aprobación y validación. ✓ Últimas pruebas. ✓ Desarrollo de conclusiones. ✓ Desarrollo de artículo de divulgación. ✓ Poster científico ✓ Puesta en operación 				


Creación de estructura del DS en 3D, proyección isométrica. Fuente: elaboración propia.


Estructura del DS en 3D, proyección isométrica texturizado. Fuente: elaboración propia.


Estructura del DS en 3D, proyección de planta texturizado. Fuente: elaboración propia.

Estructura del DS en 3D, proyección isométrica tipo alambre. Fuente: elaboración propia.



Estructura del DS en 3D, proyección frontal texturizado. Fuente: elaboración propia.

Estructura del DS en 3D, proyección derecha texturizado. Fuente: elaboración propia.

Estructura del DS en 3D, proyección izquierda texturizado. Fuente: elaboración propia.

Estructura del DS en 3D, proyección posterior texturizado. Fuente: elaboración propia.

Conclusión

Se pretende que este proyecto se instale directamente en la comunidad de "La Fuente", capacitando a las personas que van a estar secando el chile. Cabe señalar que este proyecto va a cambiar el trabajo de las personas de la localidad, ya que su producción del secado de chile va a aumentar y además se va a establecer el uso de alternativas que ayuden al cuidado del medio ambiente.

© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BCIERMIMI is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/booklets)